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Gravitational instanton

Definition

A gravitational instanton is a non-compact complete non-flat
hyperkähler 4-manifold such that

∫
X |Rm|2 <∞.

Definition

A hyperkähler 4-manifold is a 4-dimensional Riemannian
manifold (X, g) with three Kähler structures (X, g, I), (X, g, J),
(X, g,K) such that IJ = K.



Gravitational instanton

Definition

A gravitational instanton is a non-compact complete non-flat
hyperkähler 4-manifold such that

∫
X |Rm|2 <∞.

Some people use different definitions:

If the manifold is compact, it is called a K3 surface.

If the manifold is flat, then it must be R× T 3, R2 × T 2,
R3 × S1 or R4.

If the manifold is simply connected, the metric is
hyperkähler if and only it is Ricci-flat (“gravitational”) and
the curvature is anti-self-dual (“instanton”).

Some people use different curvature decay conditions.



Gravitational instanton

Question

Understand all possible asymptotic structures.

Understand all hyperkähler metrics with a given asymptotic
structure.



Asymptotical geometry of gravitation instantons

Theorem (C.-Chen)

Under the faster than quadratic curvature decay condition
|Rm| = O(r−2−ε), gravitational instantons must be ALE
(Asymptotically Locally Euclidean), ALF (Asymptotically
Locally Flat), ALG, or ALH (“G”, “H” are the letters after “E”
and “F”.)

Theorem (Sun-Zhang)

Any gravitational instanton X satisfying
∫
X |Rm|2 <∞ (so that

|Rm| = O(r−2) by Cheeger-Tian) but not |Rm| = O(r−2−ε)
must be ALG∗ or ALH∗.



Asymptotical geometry of gravitation instantons

Curvature Volume Tangent cone at infinity

ALE O(r−6) O(r4) R4/Γ

ALF-Ak O(r−3) O(r3) R3

ALF-Dk O(r−3) O(r3) R3/Z2

ALG O(r−2−δ), δ = O(r2) Cβ
minn∈Z,n<2β

2β−n
β

ALG∗ O(r−2(log r)−1) O(r2) R2/Z2

ALH O(e−δr) O(r) [0,∞)

ALH∗ O(r−2) O(r4/3) [0,∞)



Asymptotical geometry of gravitation instantons

Definition

A gravitational instanton (X, g, I, J,K) is called ALE of order ε
if there exist a bounded domain XR ⊂ X, and a diffeomorphism

Φ : (C2 \BR(0))/Γ→ X \XR

such that

|Φ∗g − gC2 |gC2 = O(r−ε), |Φ∗I − IC2 |gC2 = O(r−ε),

|Φ∗J − JC2 |gC2 = O(r−ε), |Φ∗K −KC2 |gC2 = O(r−ε).

Definition

We get ALF, ALG, ALH, ALG∗, and ALH∗ examples if we use
different standard models to replace (C2 \BR(0))/Γ. In this
talk, we focus on ALG and ALG∗ examples.



ALG∗ Model metric

Example (ALG∗ model)

Let U be the set (R2 \BR(0))× S1 and V = κ0 + ν
π log r,

ν = 1, 2, 3, 4, be a harmonic function on U . There exists an S1

fibration E with degree 2ν on U such that the connection
1-form α satisfies

dα = ∗gUdV.

then Z2 quotient of the metric

gE = L2(V gU + V −1α2)

on E is called the ALG∗ν model or the ALG∗-D4−ν model.



ALG model

Definition (ALG model)

Suppose β ∈ (0, 1] and τ ∈ H = {τ |Imτ > 0} are parameters in
the following table:

β 1
2

1
6

5
6

1
4

3
4

1
3

2
3

τ ∈ H e2πi/3 e2πi/3 i i e2πi/3 e2πi/3

Suppose l > 0 is any scaling parameter. Let E be the manifold
obtained by identifying (u, v) with (e2πiβu, e−2πiβv) in the space

{(u, v)|argu ∈ [0, 2πβ], |u| ≥ R} ⊂ (C−BR)× C/(Zl ⊕ Zτ l).

Then there is a flat hyperkähler metric g0 on E such that
ω1 = i

2(du ∧ dū+ dv ∧ dv̄) and ω+ = ω2 + iω3 = du ∧ dv. It is
called the ALG model.



Gravitational instanton

Question

Understand all possible asymptotic structures.

Understand all hyperkähler metrics with a given asymptotic
structure.



K3 surfaces

Definition

A K3 surface is a compact non-flat hyperkähler 4-manifold.

Theorem (Kodaira)

Any K3 surface is diffeomorphic to the Kummer’s surface

T̃ 4/Z2.

They are called K3 surfaces in honor of Kummer, Kähler,
Kodaira and the K2 mountain.



Torelli-type theorem for K3 surfaces

Theorem (Burns-Rapoport, Todorov, Looijenga-Peters, Siu,
Anderson)

Let X be the smooth 4-manifold which underlies the minimal
resolution of T4/Z2. Let Ω be the space of three cohomology
classes [α1], [α2], [α3] ∈ H2(X,R) which satisfy the following
conditions:

(Integrability)
∫
X α

i ∧ αj = 2δijV .

(Non-degeneracy) For any [Σ] ∈ H2(X,Z) with [Σ]2 = −2,
there exists i ∈ {1, 2, 3} with [αi][Σ] 6= 0.

Ω has two components Ω+ and Ω−. For any
([α1], [α2], [α3]) ∈ Ω+, there exists on X a hyperkähler structure
for which the cohomology classes of the Kähler forms [ωi] are
the given [αi]. It is unique up to tri-holomorphic isometries
which induce identity on H2(X,Z).



Torelli-type theorem for gravitational instantons

Torelli Volume Tangent cone
at infinity

ALE Kronheimer O(r4) R4/Γ

ALF-Ak Minerbe O(r3) R3

ALF-Dk C.-Chen O(r3) R3/Z2

ALG O(r2) Cβ
ALG∗ O(r2) R2/Z2

ALH C.-Chen O(r) [0,∞)

ALH∗ Collins-Jacob-Lin O(r4/3) [0,∞)
(Uniqueness)

We discuss the ALG and ALG∗ cases in this talk.



Topology of gravitational instantons

Theorem (C.-Chen)

Any ALG gravitational instanton is diffeomorphic to a rational
elliptic surface minus a singular fiber.

Theorem (C.-Viaclovsky)

Any ALG∗ gravitational instanton is diffeomorphic to a rational
elliptic surface minus a singular fiber.

Corollary (C.-Viaclovsky)

All ALG gravitational instantons with the same β are
diffeomorphic to each other. All ALG∗ν gravitational instantons
with the same ν are diffeomorphic to each other. Moreover, we
can fix the coordinates near infinity.



Rational elliptic surface

Definition (Elliptic surface)

A complex surface M is called an elliptic surface if there exists
a holomoprhic map π from M to a Riemann surface B such
that for all except finitely many points on B, the inverse image
is an elliptic curve. They are called regular fibers. The inverse
image of the finitely many points are called singular fibers.

Definition (Rational elliptic surface)

Let f, g be homogenous polynomials with degree 3 in three
variables. Then f/g is a map from the blow up of CP2 at the 9
points {f = g = 0} to CP1. It is called a rational elliptic surface.



Rational elliptic surface

Theorem (Kodaira)

Singular fibers on any elliptic surface can be classified.

Remark

The type of the singular fibers on rational elliptic surfaces must
be I∗0, II, II∗, III, III∗, IV, IV∗ (finite monodromy fibers), Iν ,
ν = 1, 2, ..., 9, or I∗ν , ν = 1, 2, ...4 (infinite monodromy fibers).



Tian-Yau and Hein’s construction

Yau solved Calabi’s conjeture on compact manifolds, it was
the key part of the proof of the existence part of the K3
Torelli theorem.

On non-compact manifolds, Tian-Yau did the same thing
assuming good background metrics. Their background
metric provides ALH∗ gravitational instantons.

Hein found more background metrics on a rational elliptic
surface minus a singular fiber and found examples of ALG
(finite monodromy), ALG∗ (I∗ν), ALH∗ (Iν) gravitational
instantons using Tian-Yau’s theorem.



Tian-Yau and Hein’s construction

Theorem (Tian-Yau, Hein)

Let (S, I) be a rational elliptic surface with a type I∗ν fiber D.
For any κ0 ∈ R, any Kähler form ω on S, and any rational
2-form Ω = ω2 + iω3 on S with div(Ω) = −D, there exist c > 0,
L > 0, and a smooth function ϕ : X → R, where X ≡ S \D,
such that

(X, g, ω1 = ω + i∂∂̄ϕ, c · ω2, c · ω3)

is an ALG∗ gravitational instanton with parameters ν, κ0, and
L, where g is the metric determined by ω1 and the elliptic
complex structure I.



Classfication of ALG∗ gravitational instantons

Theorem (C.-Viaclovsky)

Conversely, let (X, g,ω) be an ALG∗ gravitational instanton
with parameters ν, κ0, and L. Then ν ≤ 4, and X can be
compactified to a rational elliptic surface S with global section
by adding a Kodaira singular fiber D of type I∗ν at infinity, with
respect to the complex structure I. The 2-form Ω = ω2 + iω3 is
a rational 2-form on S with div(Ω) = −D. Furthermore, we can
choose S so that there exist a Kähler form ω on S, and a
smooth function ϕ : X → R, satisfying

ω1 = ω + i∂∂̄ϕ.

This is similar to C.-Chen’s theorem in the ALG case.



Counterexample of ALG Torelli

Theorem (C.-Chen)

When 1
2 < β < 1, the order of any ALG gravitational instanton

can be improved to 2− 1
β ∈ (0, 1). Moreover, there exist distinct

examples with the same [ωi]. When β ≤ 1
2 , the order of any

ALG gravitational instanton can be improved to 2.

Theorem (C.-Viaclovsky)

When 1
2 < β < 1, each ALG gravitational instanton of order 2

corresponds to a two-parameter family of ALG gravitational
instantons of order 2− 1

β ∈ (0, 1) with the same [ωi].

Theorem (C.-Viaclovsky-Zhang)

The order of any ALG∗ gravitational instanton can be improved
to 2.



Period map

For any ALG or ALG∗ gravitational instanton (X,ω0
1, ω

0
2, ω

0
3) of

order 2 and another ALG or ALG∗ gravitational instanton
(X,ω1, ω2, ω3) of order 2 with the same coordinates at infinity.
Then the period map is defined by

(ω1 − ω0
1, ω2 − ω0

2, ω3 − ω0
3) ∈ H ⊕H⊕H,

where

H = Ima(H2
cpt(X)→ H2(X)) = {[ω] ∈ H2(X),

∫
D
ω = 0}.



Torelli-type theorem for gravitational instantons

Theorem (C.-Viaclovsky-Zhang)

The period map is injective up to a diffeomorphism which fixes
H2(X).

Theorem (C.-Viaclovsky-Zhang)

The image of the period map is open in H⊕H⊕H.

Conjecture

The image of the period map is H⊕H⊕H if we allow orbifolds.



Uniqueness parts of Torelli-type theorems

Theorem (C.-Viaclovsky-Zhang)

The period map is injective up to a diffeomorphism which fixes
g, I, J , K, and H2(X).

The key idea is to use them as building blocks of a gluing
construction to obtain a hyperKähler metric on the K3 surface
and then use the K3 Torelli theorem. Actually, the same idea
was used by C.-Chen to prove the uniqueness part of the ALH
Torelli theorem.



Elliptic K3 surface

Definition (Elliptic surface)

A complex surface M is called an elliptic surface if there exists
a holomoprhic map π from M to a Riemann surface B such
that for all except finitely many points on B, the inverse image
is an elliptic curve. They are called regular fibers. The inverse
image of the finitely many points are called singular fibers.

Theorem (Kodaira)

Singular fibers on any elliptic surface can be classified.

Remark

If the elliptic surface is a K3 surface, then B must be CP1 and
the type of the singular fibers must be I∗0, II, II∗, III, III∗, IV,
IV∗ (finite monodromy fibers), Iν , or I∗ν (ν = 1, 2, ...) (infinite
monodromy fibers).



Elliptic K3 surface

As the first step, we fix the elliptic complex structure and study
collapsing hyperkähler metrics. This was done by
C.-Viaclovsky-Zhang in 2020.
Then in 2021, we allow the change of complex structure in order
to prove the Torelli-type theorems for ALG and ALG∗

gravitational instantons.



Gluing of ALG and ALG∗ gravitational instantons

Theorem (C.-Viaclovsky-Zhang)

For any elliptic K3 surface, we can glue the
Greene-Shapere-Vafa-Yau’s semi-flat metric with isotrivial order
2 ALG gravitational instantons near finite monodromy fibers,
multi-Ooguri-Vafa metrics near Iν fibers, and the Z2 quotients
of the multi-Ooguri-Vafa metrics together with Eguchi-Hanson
metrics near I∗ν fibers to get a hyperKähler metric on the K3
surface without changing the complex structure.

Remark

Before our work, Gross-Wilson studied the case when the
elliptic K3 surface has 24 I1 fibers. This is the generic case.



Isotrivial ALG spaces

Definition (Isotrivial ALG spaces)

Consider the following β ∈ (0, 1] and τ ∈ H = {τ |Imτ > 0}:

D0 I∗0 II∗ II III∗ III IV∗ IV

D∞ I∗0 II II∗ III III∗ IV IV∗

β 1
2

1
6

5
6

1
4

3
4

1
3

2
3

τ ∈ H e2πi/3 e2πi/3 i i e2πi/3 e2πi/3

H2 D̃4 Ẽ8 Ã0 Ẽ7 Ã1 Ẽ6 Ã2

Then for any l > 0, the central fiber of

({(u, v)|argu ∈ [0, 2πβ], |u| > 0} ⊂ (C−{0})×C/(Zl⊕Zτ l))/ ∼,

can be resolved (by Kodaira), where (u, v) ∼ (e2πiβu, e−2πiβv)
The resolution is called an isotrivial ALG space. It can be
compactified into a rational elliptic surface minus a singular
fiber at infinity.



Gibbons-Hawking construction

Example (Gibbons-Hawking)

Let U be a subset of R3, R2 × S1, or R× T 2, gU be the flat
metric on U , and V be a harmonic function on U . Suppose that
there is an S1 fibration E on U such that the connection 1-form
α satisfies

dα = ∗gUdV,

then the metric
gE = V gU + V −1α2

is a hyperKähler metric on E.



Gibbons-Hawking construction

Example

If U = R3 \ {0} = (0,∞)× S2, V = 1
4πr , and the S1 fibration is

the Hopf fibration S1 → S3 → S2, then the Gibbons-Hawking
metric is just the Euclidean metric on R4 \ {0} = (0,∞)× S3.

Example (multi-Ooguri-Vafa)

When U = (R2 × S1) \ {p1, ..., pν} and V be a harmonic
function on U such that V ∼ T − ν

2π log r for a constant T , and
V ∼ 1

4π|x−pi| near pi, then the Gibbons-Hawking metric is called
the multi-Ooguri-Vafa metric.

Example (Eguchi-Hanson metric)

When U = R3 \ {p1, p2} and V = 1
4π|x−p1| + 1

4π|x−p2| , then the
Gibbons-Hawking metric is called the Eguchi-Hanson metric. It
is ALE and is asymptotic to R4/Z2.



Gluing of ALG and ALG∗ gravitational instantons

If we allow the change of the complex structure, ALG∗ and
non-isotrivial order 2 ALG gravitational instantons can also be
used as building blocks of the gluing construction.

Theorem (C.-Viaclovsky-Zhang)

For any elliptic K3 surface, we can glue the
Greene-Shapere-Vafa-Yau’s semi-flat metric with order 2 ALG
gravitational instantons near finite monodromy fibers,
multi-Ooguri-Vafa metric near Iν fibers, and ALG∗ gravitational
instantons together with Gibbons-Hawking metrics near I∗ν fibers
to get a hyperKähler metric on the K3 surface.

Corollary (C.-Viaclovsky-Zhang)

The uniqueness parts of the order 2 ALG Torelli theorem and
ALG∗ Torelli theorem hold.



Gluing of ALG∗ gravitational instantons

Example (C.-Viaclovsky-Zhang)

Near each I∗ν fiber, the Greene-Shapere-Vafa-Yau’s semi-flat
metric looks like the Z2 quotient of a Gibbons-Hawking metric
with U = R2 × S1 and V ∼ T − ν

π log r for a constant T . Recall
that an ALG∗ space looks like the Z2 quotient of a Gibbons
Hawking metric with U = R2 × S1 and V ∼ T + b

π log r for a
constant T . In our gluing construction, we choose V as a
harmonic function on

U = (R2 × S1) \ {p1, ...pb+ν ,−p1, ...,−pb+ν}

such that V ∼ T + b
π log r near 0, V ∼ T − ν

π log r near ∞,
V ∼ 1

4π|x−pi| near pi, and V ∼ 1
4π|x+pi| near −pi.



Existence part of Torelli-type theorems

Conjecturally, the Biquard-Boalch’s study of Higgs bundles
with irregular singularities may provide enough ALG and
ALG∗ gravitational instantons. They only proved that the
metric on the moduli space is hyperKähler and complete.

Fredrickson-Mazzeo-Swoboda-Weiss proved that the moduli
space of Higgs bundles with parabolic singularities is ALG.

Conjecturally, the Cherkis-Kapustin’s periodic monopole
construction may provide enough ALG∗ gravitational
instantons. The only known result was the thesis of
Foscolo, who proved that the moduli space is non-empty
and the metric on the moduli space is hyperKähler.

In a work with N.Z.Li in prepration, I’m proving that the
Biquard-Boalch metric is ALG or ALG∗.



Thanks

Thank you for your attention!


